MICROSERVICES

Reference Architecture

MICROSERVICES

Reference Architecture

by Chris Stetson

NGINX

© NGINX, Inc. 2017

N o0 o AW

Table of Contents

Introduction. ii
NGINX Microservices Reference Architecture Overview 1
TheProxyModel. 7
The RouterMeshModel 16
The FabricModel 20
Adapting the Twelve-Factor App for Microservices 31
Implementing the Circuit Breaker Pattern with NGINXPlus 36

Building a Web Frontend for Microservices 46

INtroduction

The move to microservices is a seismic shift in web application development and
delivery. Because we believe moving to microservices is crucial to the success
of our customers, we at NGINX have launched a dedicated program to develop
NGINX software features and development practices in support of microservices.

We also recognize that there are many different approaches to implementing
microservices, many of them novel and specific to the needs of individual
development teams. We think there is a need for models to make it easier for
companies to develop and deliver their own microservices-based applications.

With all this in mind, we have developed the NGINX Microservices Reference
Architecture (MRA) — a set of models that you can use to create your own
microservices applications.

The MRA is made up of two components:

* A detailed description of each of the three models
* Downloadable code that implements our sample photosharing
program, Ingenious.

The only difference among the three models is the configNGINX Plus
configuration code for each model. This ebook describes each of the models;
detailed descriptions, configuration code, and code for the Ingenious sample
program will be made available later this year.

We have three goals in building the MRA:

* To provide customers and the industry with ready-to-use blueprints for building
microservices-based systems, speeding —and improving — development

* To create a platform for testing new features in NGINX and NGINX Plus,
whether developed internally or externally, and whether distributed in the
product core or as dynamic modules

* To help us understand partner systems and components so we can gain a
holistic perspective on the microservices ecosystem

The MRAis also an important part of Professional Services offerings for NGINX
customers. In the MRA, we use features common to both the open source
NGINX software and NGINX Plus where possible, and NGINX Plus-specific
features where needed. NGINX Plus dependencies are stronger in the more
complex models, as described below.

We anticipate that many users of the MRA will benefit from some or all of the
aspects of NGINX Plus, all of which are available with an NGINX Plus subscription:
its expanded and enhanced feature set, NGINX Plus access to NGINX technical
support, and access to NGINX Professional Services.

This ebook's chapters describe the MRA in depth:

. NGINX Microservices Reference Architecture Overview

. The Proxy Model

. The Router Mesh Model

. The Fabric Model

. Adapting the Twelve-Factor App for Microservices

. Implementing the Circuit Breaker Pattern with NGINX Plus
. Building a Web Frontend for Microservices

~N OO O~ WN =

The NGINX MRA is an exciting development for us, and for the customers and
partners we've shared it with to date. Please give us your feedback.

You may also wish to check out these other NGINX resources about microservices:

* Avery useful and popular series of blog posts on the NGINX site by
Chris Richardson, describing most aspects of microservices application design
* The Chris Richardson articles collected into a free ebook, including additional
tips on implementing microservices with NGINX and NGINX Plus
* Other microservices blog posts on the NGINX website
* Microservices webinars on the NGINX website

In the meantime, try out the MRA with NGINX Plus for yourself — start your
free 30-day trial today, or contact us at NGINX for a demo.

https://www.nginx.com/services/
http://www.nginx.org/en/
http://www.nginx.org/en/
https://www.nginx.com/products/
https://www.nginx.com/blog/author/crichardson
https://www.nginx.com/resources/library/designing-deploying-microservices/
https://www.nginx.com/blog/tag/microservices/
https://www.nginx.com/resources/webinars/
https://www.nginx.com/free-trial-request/
https://www.nginx.com/#contact-us

-1 NGINX Microservices
Reference Architecture
Overview

The NGINX Microservices Reference Architecture (MRA) is a set of three models
and source code plus a sample app called Ingenious. The models are
progressively more complex and useful for larger, more demanding app needs.

The models differ mainly in terms of their server configuration and configuration
code; the source code is nearly the same from one model to another. The Ingenious
app is composed of a set of services that you can use directly, modify, or use as
reference points for your own services.

The services in the Reference Architecture are designed to be lightweight,
ephemeral, and stateless. We have designed the MRA to comply with the
principles of the Twelve-Factor App, as described in Chapter 5.

The MRA uses industry-standard components like Docker containers, a wide
range of languages — Java, PHP, Python, Node.js/JavaScript, and Ruby —
and NGINX-based networking.

One of the biggest changes in application design and architecture when
moving to microservices is using the network to communicate between
functional components of the application. In monolithic apps, application
components communicate in memory. In a microservices app, that
communication happens over the network, so network design and
implementation become critically important.

To reflect this, the MRA has been implemented using three different
networking models, all of which use NGINX or NGINX Plus. All three models
use the circuit breaker pattern — see Chapter 6 —and can be used with our
microservices-based frontend, which is described in Chapter 7.

Microservices Reference Architecture 1 Ch. T-NGINX MRA Overview

The models range from relatively simple to more complex and feature-rich:

* Proxy Model - A simple networking model suitable for implementing NGINX Plus
as a controller or APl gateway for a microservices application.

* Router Mesh Model - A more robust approach to networking, with a load balancer
on each host and management of the connections between systems. This model
is similar to the architecture of Deis 1.0.

* Fabric Model—The crown jewel of the MRA. The Fabric Model utilizes NGINX Plus
in each container, acting as a forward and reverse proxy. It works well for high-load
systems and supports SSL/TLS at all levels, with NGINX Plus providing service
discovery, reduced latency, and persistent SSL/TLS connections.

The three models form a progression. As you begin implementing a new
microservices application or converting an existing monolithic app to
microservices, the Proxy Model may well be sufficient. You might then move

to the Router Mesh Model for increased power and control; it covers the needs
of a great many microservices apps. For the largest apps, and those that require
SSL/TLS for interservice communication, use the Fabric Model.

Our intention is that you use these models as a starting point for your own
microservices implementations, and we welcome feedback from you as to
how to improve the MRA.

A brief description of each model follows; we suggest you read all the descriptions
to start getting an idea of how you might best use one or more of the models.

Subsequent chapters describe each of the models in detail, one per chapter.

The Proxy Model in Brief

The Proxy Model is a relatively simple networking model. It's an excellent starting
point for an initial microservices application, or as a target model in converting a
moderately complex monolithic legacy app.

In the Proxy Model, NGINX or NGINX Plus acts as an ingress controller, routing
requests to microservices. NGINX Plus can use dynamic DNS for service
discovery as new services are created. The Proxy Model is also suitable for
use as a template when using NGINX as an API gateway.

If interservice communication is needed —and itis, by most applications of any
level of complexity — the service registry provides the mechanism within the
cluster. (See the in-depth discussion of interservice communication mechanisms
on our blog.) Docker Cloud uses this approach by default: to connect to another
service, a service queries the DNS server and gets an IP address to send a
request to.

Microservices Reference Architecture 2 Ch. T-NGINXMRA Overy

ew

https://www.ctl.io/developers/blog/post/deis-1-0-released-popular-docker-paas-becoming-more-robust/
https://www.nginx.com/blog/building-microservices-inter-process-communication/

Pages — SVC1 |—] SvVC2

Pages — SVC3 |—| SVC4

Pages — SVC5 |—] SVC6

Figure 1-1. The Proxy Model features a single instance of NGINX Plus, used as an ingress
controller fo microservices requests

Generally, the Proxy Model is workable for simple to moderately complex
applications. It's not the most efficient approach or model for load balancing,
especially at scale; use the Router Mesh Model or Fabric Model if you have
heavy load-balancing requirements. (“Scale” can refer to a large number of
microservices as well as high traffic volumes.)

For an in-depth exploration of this model, see The Proxy Model.

Stepping Up to the Router Mesh Model

The Router Mesh Model is moderately complex and is a good match for robust
new application designs. It's also suitable for converting more complex, monolithic
legacy apps to microservices, where the legacy app does not need all the
capabilities of the Fabric Model.

As shown in Figure 1-2, the Router Mesh Model takes a more robust approach to
networking than the Proxy Model by running a load balancer on each host and
actively managing connections among microservices. The key benefit of the
Router Mesh Model is more efficient and robust load balancing among services.
If you use NGINX Plus, you can implement the circuit breaker pattern (discussed
in Chapter 6), including active health checks, to monitor the individual service
instances and to throttle traffic gracefully when they are taken down.

Microservices Reference Architecture 3 Ch. T-NGINXMRA Overview

Pages SVC1 SVC 2

Pages SVC 4 SVC5

Figure 1-2. The Router Mesh Model features NGINX Plus as a reverse proxy serverand a
second NGINX Plus instance as an ingress controller

For an in-depth exploration of this model, see The Router Mesh Model.

The Fabric Model, with Optional SSL/TLS

The Fabric Model brings some of the most exciting possibilities of microservices to
life, including flexibility in service discovery and load balancing, high performance,
and ubiquitous SSL/TLS down to the level of individual microservices. The Fabric
Modelis suitable for all secure applications and scalable to very large applications.

In the Fabric Model, NGINX Plus is deployed within each of the containers that
host microservice instances. NGINX Plus becomes the forward and reverse
proxy for all HTTP traffic going in and out of the containers. The applications talk
to alocalhost location for all service connections and rely on NGINX Plus to do
service discovery, load balancing, and health checking.

In the implementation of the Fabric Model for the sample photosharing app,
Ingenious, NGINX Plus queries ZooKeeper through the Mesos DNS for all instances
of the services that the app needs to connect to. We use the valid parameter
tothe resolver directive to control how often NGINX Plus queries DNS for
changes to the set of instances. With valid parameter setto 1, for example,
NGINX Plus updates its routing information every second.

Microservices Reference Architecture 4 Ch. T-NGINXMRA Overview

https://www.nginx.com/blog/service-discovery-nginx-plus-zookeeper/
http://nginx.org/en/docs/http/ngx_http_core_module.html#resolver

Pages SVC1

@ (o) 1] (D

. Microservice .

SVC5

Pages

Figure 1-3. The Fabric Model features NGINX Plus as a reverse proxy server and an additional
NGINX Plus instance handling service discovery, load balancing, and interprocess
communication for each service instance

Because of the powerful HTTP processing in NGINX Plus, we can use keepalive
connections to maintain stateful connections to microservices, reducing latency
and improving performance. This is an especially valuable feature when using
SSL/TLS to secure traffic between the microservices.

Finally, we use NGINX Plus' active health checks to manage traffic to healthy
instances and, essentially, build in the circuit breaker pattern (described in
Chapter 6) for free.

For an in-depth exploration of this model, see The Fabric Model.

Microservices Reference Architecture 5 Ch. T-NGINXMRA Overview

Ingenious: A Demo App for the MRA

The NGINX MRA includes a sample application as a demo: the Ingenious
photosharing app. We will provide a separate version of Ingenious implemented
in each of the three models — Proxy, Router Mesh, and Fabric. The Ingenious
demo app will be released to the public later this year.

Ingenious is a simplified version of a photo storage and sharing application,
a la Flickr or Shutterfly. We chose a photosharing application for a few reasons:

¢ |t's easy for both users and developers to grasp what it does.
* There are multiple data dimensions to manage.
* |t's easy to incorporate beautiful design in the app.

y
Ngenious

an NGiMX microservices project

Ingenious is a photo-sharing app built by NGINX
to demonstrate microservices architecture.

Figure 1-4. The Ingenious app is a collection of services that can easily be configured to
run in any of the three models of the MRA - the Proxy Model, Router Mesh Model, or
Fabric Model

The Proxy
Vodel

As the name implies, the Proxy Model of the NGINX Microservices Reference
Architecture (MRA) places NGINX Plus as a reverse proxy server in front of
servers running the services that make up a microservices-based application.
NGINX Plus provides the central point of access to the services.

The Proxy Model is suitable for several uses cases, including:

* Proxying relatively simple applications

* Improving the performance of a monolithic application before converting it
to microservices

* As a starting point before moving to other, more complex networking models

Within the Proxy Model, the NGINX Plus reverse proxy server can also act as an
APl gateway.

Figure 2-1 shows how, in the Proxy Model, NGINX Plus runs as a reverse proxy
server and interacts with several services, including multiple instances of the
Pages service — the web microservice that we describe in Chapter 7.

Microservices Reference Architecture 7 Ch. 2-The Proxy Mode

https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/

Pages [—| SVC1 |—] SVC2

Pages — SVC3 |—] SVC4

Pages — SVC5 |—] SVC6

Figure 2-1. In the Proxy Model, NGINX Plus serves as a reverse proxy server and
central access point to services

The other two models in the MRA, the Router Mesh Model and the Fabric Model,
build on the Proxy Model to deliver significantly greater functionality (see Chapter 3
and Chapter 4). However, once you understand the Proxy Model, the other models
are relatively easy to grasp.

The overall structure and features of the Proxy Model are only partly specific to
microservices applications; many of them are simply best practices when
deploying NGINX Plus as a reverse proxy server and load balancer.

You can begin implementing the Proxy Model while your application is still a
monolith. Simply position NGINX Plus as a reverse proxy in front of your application
server and implement the Proxy Model features described below. You are then
in a good position to convert your application to microservices.

The Proxy Modelis agnostic as to the mechanism you implement for communication
between microservice instances running on the application servers behind
NGINX Plus. Communication between the microservices is handled through a
mechanism of your choice, such as DNS round-robin requests from one service
to another. For an in-depth exploration of the major approaches to interprocess
communication in a microservices architecture, see Chapter 3 in our ebook,
Microsevices: From Design to Deployment.

Microservices Reference Architecture 8 Ch.2-The Proxy Mode

https://www.nginx.com/blog/refactoring-a-monolith-into-microservices/
https://www.nginx.com/resources/library/designing-deploying-microservices/

Proxy Model Capabilities

The capabilities of the Proxy Model fall into three categories. The features in the
first group optimize performance:

» Caching

* Load balancing

* Low-latency connectivity
* High availability

The features in the second group improve security and make application
management easier:

* Rate limiting

* SSL/TLS termination
* HTTP/2 support

* Health checks

The features in the final group are specific to microservices:

» Central communications point for services
* Dynamic service discovery
* APl gateway capability

We discuss each group of features in more detail below. You can use
the information in this chapter to start moving your applications to the
Proxy Model now. Making these changes will provide your app with
immediate benefits in performance, reliability, security, and scalability.

Performance Optimization Features

Implementing the features described here — caching, load balancing,
high-speed connectivity, and high availability — optimizes the performance
of your applications.

Caching Static and Dynamic Files

Cachingis a highly useful feature of NGINX Plus and an important feature in

the Proxy Model. Both static file caching and microcaching —that is, caching
application-generated content for brief periods — speed content delivery to
users and reduce load on the application:

* By caching static files at the proxy server, NGINX Plus can prevent many requests
from reaching application servers. This simplifies design and operation of the
microservices application.

Microservices Reference Architecture 9 Ch. 2-The Proxy Mode

https://www.nginx.com/resources/admin-guide/content-caching/

* You can also microcache dynamic, application-generated files, whether from
a monolithic app or from a service in a microservices app. For many read
operations, the response from the service is going to be identical to the data
it returned for the same request made a few moments earlier. In such cases,
calling back through the service graph and getting fresh data for every request
is a waste of resources. Microcaching saves work at the service level while still
delivering fresh content.

NGINX Plus has a robust caching system to temporarily store most any type of data
or content. NGINX Plus also has a cache purge APl that allows your application
or operations tooling — support code that helps manage apps, clear caches,
and so on —to dynamically clear the cache when data is refreshed.

Robust Load Balancing to Services

Microservices applications require load balancing to an even greater degree than
monolithic applications. The architecture of a microservices application relies on
multiple, small services working in concert to provide application functionality.
This inherently requires robust, intelligent load balancing, especially where external
clients access the service APIs directly.

NGINX Plus, as the proxy gateway to the application, can use a variety of
mechanisms for load balancing, one of its most powerful features. With the
dynamic service discovery features of NGINX Plus, new instances of services
can be added to the mix and made available for load balancing as soon as they
spin up.

Low-Latency Connectivity

As you move to microservices, one of the major changes in application behavior
concerns how application components communicate with each other. Ina
monolithic app, the objects or functions communicate in memory and share
data through pointers or object references.

In a microservices app, functional components (the services) communicate over
the network, typically using HTTP. So the network is a critical bottleneck in a
microservices application, as itis inherently slower than in-memory communication.

The external connection to the system, whether from a client app, a web browser,

or an external server, has the highest latency of any part of the application —and
therefore also creates the greatest need to reduce latency. NGINX Plus provides
features like HTTP/2 support for minimizing connection start-up times, and
HTTP/HTTPS keepalive functionality for connecting to external clients as well
as to peer microservices.

Microservices Reference Architecture 10 Ch. 2-The Proxy Mode

https://www.nginx.com/blog/benefits-of-microcaching-nginx/
https://www.nginx.com/products/content-caching-nginx-plus/#purging
https://www.nginx.com/solutions/load-balancing/

High Availability

In the Proxy Model network configuration, there are a variety of ways to set up
NGINX Plus in a high availability (HA) configuration:

* In on-premises environments, you can use our keepalived-based solution to
set up the NGINX Plus instances in an active-passive HA pair. This approach
works well and provides fast failure recovery with low-level hardware
integration.

On Google Compute Engine (GCE), you can set up all-active HA as described

in our deployment guide, All-Active NGINX Plus Load Balancing on Google

Compute Engine.

* For Amazon Web Services (AWS), we have been working on a Lambda-based
solution to provide HA functionality. This system provides the same type of high
availability as for on-premises servers by using API-transferable IP addresses,
similar to those in AWS's Elastic IP service. In combination with the
autoscaling features of a Platform as a Service (PaaS) like RedHat's OpenShift,
the resultis a resilient HA configuration with autorecovery features that
provide defense in depth against failure.

Note: With a robust HA configuration, and the powerful load-balancing capabilities
of NGINX Plus in a cloud environment, you may not need a cloud-specific load
balancer such as Amazon Elastic Load Balancer (ELB).

Security and Management Features

Security and management features include rate limiting, SSL/TLS and HTTP/2
termination, and health checks.

Rate Limiting

A feature thatis useful for managing traffic into the microservices application in the
Proxy Model is rate (or request) limiting. Microservices applications are subject to
the same attacks and request problems as any Internet-accessible application.
However, unlike a monolithic app, microservices applications have no inherent,
single governor to detect attacks or other problematic requests. In the Proxy
Model, NGINX Plus acts as the single point of entry to the microservices application,
and so can evaluate all requests to determine if there are problems like a DDoS
attack. If a DDoS attack is occurring, NGINX Plus has a variety of techniques for
restricting or slowing request traffic.

Microservices Reference Architecture 11 Ch. 2-The Proxy Mode

https://www.nginx.com/resources/admin-guide/nginx-ha-keepalived/
https://www.nginx.com/resources/deployment-guides/all-active-nginx-plus-load-balancing-gce/
https://www.nginx.com/resources/deployment-guides/all-active-nginx-plus-load-balancing-gce/
https://www.nginx.com/blog/mitigating-ddos-attacks-with-nginx-and-nginx-plus/
http://nginx.org/en/docs/http/ngx_http_core_module.html#resolver

SSL/TLS Termination

Most applications need to support SSL/TLS for any sort of authenticated or secure
interaction, and many major sites have switched to using HTTPS exclusively
(for example, Google and Facebook). Having NGINX Plus as the proxy gateway to
the microservices application can also provide SSL/TLS termination. NGINX Plus
has many advanced SSL/TLS features, including SNI, modern cipher support,
and server-definable SSL/TLS connection policies.

HTTP/2

HTTP/2 is a new technology, growing in use across the Web. HTTP/2 is designed
to reduce network latency and accelerate the transfer of data by multiplexing
data requests across a single, established, persistent connection. NGINX Plus
provides robust HTTP/2 support, so your microservices application can allow
clients to take advantage of the biggest technology advance in HTTP in more
than a decade. Figure 2-2 shows how HTTP/2 multiplexes responses to client
requests onto a single TCP connection.

HTTP/2 Inside: multiplexing

Server Client

HTTP Response 1 ——>
HTTP/2 —>

HTTP Response 2 ——> f

Single TCP Connection
HTTP Response 3 ——>

Figure 2-2. HTTP responses multiplexed onto a single TCP connection by HTTP/2

Health Checks

Active application health checks are another useful feature that NGINX Plus
provides in the Proxy Model. Microservices applications, like all applications,
suffer errors and problems that cause them to slow down, fail, or just act strangely.
Itis therefore useful for the service to surface its "health” status through a
URL with various messages, such as “memory usage has exceeded a given
threshold” or "the system is unable to connect to the database”. NGINX Plus
can evaluate a variety of messages and respond by stopping traffic to a troubled
instance and rerouting traffic to other instances until the troubled one recovers.

Microservices Reference Architecture 12 Ch. 2-The Proxy Mode

https://www.nginx.com/resources/admin-guide/nginx-ssl-termination/
https://www.nginx.com/blog/7-tips-for-faster-http2-performance/
https://www.nginx.com/products/application-health-checks/

Microservices-Specific Features

Microservices-specific features of NGINX Plus in the Proxy Model derive from its
position as the central communications point for services, its ability to do
dynamic service discovery, and (optionally) its role as an API gateway.

Central Communications Point for Services

Clients wishing to use a microservices application need one central point for
communicating with the application. Developers and operations people need to
implement as much functionality as possible without having to write and manage
additional services for static file caching, microcaching, load balancing, rate
limiting, and other functions. The Proxy Model uses the NGINX Plus proxy server
as the obvious and most effective place to handle communication and
pan-microservice functionality, potentially including service discovery (see the
next section) and management of session-specific data.

Dynamic Service Discovery

One of the most unique and defining qualities of a microservices application is
thatitis made up of many independent components. Each service is designed
to scale dynamically and live ephemerally in the application. This means that
NGINX Plus needs to track and route traffic to service instances as they come up
and remove them from the load-balancing pool as they are taken out of service.

NGINX Plus has a number of features that are specifically designed to support
service discovery — the most important of which is the DNS resolver feature that
queries the service registry, whether provided by Consul, etcd, Kubernetes, or
ZooKeeper, to get service instance information and provide routes back to the
services. NGINX Plus R9 introduced SRV record support, so a service instance
can live on any IP address/port number combination and NGINX Plus can route
back to it dynamically.

Because the NGINX Plus DNS resolver is asynchronous, it can scan the service
registry and add new service endpoints, or take them out of the pool, without
blocking the request processing that is NGINX Plus’ main job.

The DNS resolver is also configurable, so it does not need to rely on the DNS entry's
time-to-live (TTL) records to know when to refresh the IP address —in fact, relying
on TTL ina microservices application can be disastrous. Instead, the valid
parameter to the resolver directive allows you to set the frequency at which
the resolver scans the service registry.

Figure 2-3 shows service discovery using a shared service registry, as described
in our post on service discovery.

Microservices Reference Architecture 13 Ch. 2-The Proxy Mode

https://www.nginx.com/blog/event-driven-data-management-microservices/
https://www.nginx.com/blog/service-discovery-with-nginx-plus-and-consul/
https://www.nginx.com/blog/service-discovery-nginx-plus-etcd/
https://www.nginx.com/resources/webinars/bringing-kubernetes-to-the-edge-with-nginx-plus/
https://www.nginx.com/blog/service-discovery-nginx-plus-zookeeper/
https://www.nginx.com/blog/nginx-plus-r9-released/#dns-srv
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/nginx-plus-r9-released/#dns-srv
http://nginx.org/en/docs/http/ngx_http_core_module.html#resolver

10.4.3.1:8756

SERVICE
INSTANCE A

SERVICE
INSTANCE A Registry-

Registry
Client

10.4.3.99:4545

SERVICE
INSTANCE B

Registry
Client

10.4.3.20:333

SERVICE
INSTANCE C

Registry
. Client

Figure 2-3. Service discovery using a shared service registry

API Gateway Capability

We favor a web frontend or an APl gateway for client communication with the
microservices application. The APl gateway receives requests from clients,
performs any needed protocol translation (as with SSL/TLS), and routes the
requests to the appropriate service — using the results of service discovery, as
mentioned above.

You can extend the capabilities of an APl gateway using a tool such as the Lua
module for NGINX Plus. You can, for instance, have code at the API gateway
aggregate the results from requests to several microservices into a single
response to the client.

Microservices Reference Architecture 14 Ch. 2-The Proxy Model

https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
https://github.com/openresty/lua-nginx-module
https://github.com/openresty/lua-nginx-module

The Proxy Model also takes advantage of the fact that the APl gateway is a logical
place to handle capabilities that are not specific to microservices, such as caching,
load balancing, and the others described in this chapter.

Conclusion

The Proxy Model networking architecture for microservices provides many useful
features and a high degree of functionality. NGINX Plus, acting as the reverse proxy
server, can provide clear benefits to the microservices application by making the
system more robust, resilient, and dynamic. NGINX Plus makes it easy to manage
traffic, load balance requests, and dynamically respond to changes in the backend
microservices application.

Microservices Reference Architecture 15 Ch. 2-The Proxy Mode

The Router
Mesh Model

In terms of sophistication and comprehensiveness, the Router Mesh Model

is the middle of the three models in the NGINX Microservices Reference
Architecture (MRA). Each of the models, starting with the Proxy Model, uses an
NGINX Plus high-availability (HA) server cluster in the reverse proxy position,
“in front of" other servers. The Router Mesh model adds a second server cluster
as arouter mesh hub, handling interservice communication. The Fabric Model
instead adds an NGINX Plus server instance for each microservice instance,
handling interservice communication from inside the same container as each
service instance.

Figure 3-1 shows how NGINX Plus performs two roles in the Router Mesh Model.
One NGINX Plus server cluster acts as a frontend reverse proxy; another NGINX
Plus server cluster functions as a routing hub. This configuration allows for
optimal request distribution and purpose-driven separation of concerns.

Pages SVC1 SvVC 2
% @ N + -
Pages SvC 4 SVC5

Figure 3-1. In the Router Mesh Model, NGINX Plus runs as a reverse proxy server and as a
router mesh hub

Microservices Reference Architecture 16 Ch. 3-The Router Mesh Mode

Reverse Proxy and Load Balancing Server Capabilities

In the Router Mesh Model, the NGINX Plus proxy server cluster manages incoming
traffic, but sends requests to the router mesh server cluster rather than directly
to the service instances.

The reverse proxy server cluster handles performance-related functions such as
caching, low-latency connectivity, and high availability. It also handles security
and application management tasks such as rate limiting, running a WAF, SSL/TLS
termination, and HTTP/2 support.

While the first server cluster provides reverse proxy services, the second serves
as a router mesh hub, providing:

* A central communications point for services
* Dynamic service discovery

* Load balancing

* Interservice caching

* Health checks and the circuit breaker pattern

The features above are described in The Proxy Model. For additional details, see
our blog posts on dynamic service discovery, APl gateways, and health checks.

Implementing the Router Mesh Model

Implementing a microservices architecture using the Router Mesh Modelis a
four-step process:

1. Set up a proxy server cluster

2. Deploy a second server cluster as a router mesh hub with the interface code
for your orchestration tool

3. Indicate which services to load balance

4. Tell the services the new endpoints of the services they use

For the first step, set up a proxy server cluster in the same way as for the
Proxy Model. For the subsequent steps, begin by deploying a container to be
used for the router mesh microservices hub. This container holds the

NGINX Plus instance and the appropriate agent for the service registry and
orchestration tools you are using.

Once the container is deployed and scaled, you indicate which services are to be
load balanced by adding this environment variable to the definition for each one
in the container management system's service definition file:

LB SERVICE=true

Microservices Reference Architecture 17 Ch.3-The Router Mesh Mode

https://www.nginx.com/blog/nginx-plus-r10-released/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
https://www.nginx.com/products/application-health-checks/

The router hub monitors the service registry and the stream of events that are
emitted as new services and instances are created, modified, and destroyed.

In order to integrate successfully, the router mesh hub needs adapters to work with
the different registry and orchestration tools available on the market. Currently,
we have the Router Mesh Model working with Docker Swarm-based tools,
Mesos-based systems, and Kubernetes-based tools.

The NGINX Plus servers in the router mesh hub provide load balancing for the
pool of service instances. To send requests to the service instances, you route
requests to the NGINX Plus servers in the router mesh hub and use the service
name, either as part of the URI path or as a service name.

For example, the URL for the Pages web frontend depicted in in Figure 3-1 looks
something like this:

http://router-mesh.internal.mra.com/pages/index.php

With Kubernetes as of this writing, and soon with Mesos DC/OS systems,
the Router Mesh Model implements the routes as servers rather than locations.
In this type of implementation, the route above is accessible as:

http://pages.router-mesh.internal.mra.com/index.php

This allows some types of payloads with internal references (for example, HTML)
to make requests without having to modify the links. For most JSON payloads,
the original, path-based format works well.

One of the advantages of using NGINX Plus in the Router Mesh Model is that
the system can implement the circuit breaker pattern for all services that need

it (see Chapter 6). An active health check is automatically created to monitor
user-configurable URIs, so that service instances can be queried for their
health status. NGINX Plus diverts traffic away from unhealthy service instances

to give them a chance to recover, or to be recycled if they cannot recover. If all
service instances are down or unavailable, NGINX Plus can provide continuity of
service by delivering cached data.

Microservices Reference Architecture 18 Ch. 3-The Router Mesh Mode

Conclusion

The Router Mesh Model networking architecture for microservices is the
middle option of the NGINX MRA models. In contrast to the Proxy Model,
which puts all relevant functions on one NGINX Plus cluster, the Router Mesh
model uses two NGINX Plus server clusters, configured for different roles.
One server cluster acts as a proxy server and the other as a router mesh hub
for your microservices.

Splitting different types of functions between two different server clusters
provides speed, control, and opportunities to optimize for security. In the
second server cluster, service discovery (in collaboration with a service
registry tool) and load balancing are fast, capable, and configurable. Health
checks for all service instances make the system as a whole faster, more stable,
and more resilient.

Microservices Reference Architecture 19 Ch.3-The Router Mesh Mode

The Fabric
- Model

The Fabric Model is the most sophisticated of the three models found in the
NGINX Microservices Reference Architecture (MRA). It's internally secure, fast,
efficient, and resilient.

Like the Proxy Model and Router Mesh Model, the Fabric Model places NGINX
Plus as a reverse proxy server in front of application servers, bringing many
benefits. But whereas, in the Router Mesh Model, a second NGINX Plus instance
acts as a central communications point for other service instances, in the Fabric
Model there is a dedicated NGINX Plus server instance in each microservice
container. As aresult, SSL/TLS security can be implemented for all connections
at the microservice level, with high performance.

Using many NGINX Plus instances has one crucial benefit: you can dynamically
create SSL/TLS connections between microservice instances — connections
that are stable, persistent, and therefore fast. Aninitial SSL/TLS handshake
establishes a connection that the microservices application can reuse, without
further overhead, for scores, hundreds, or thousands of interservice requests.

Figure 4-1 shows how, in the Fabric Model, NGINX Plus runs on the reverse
proxy server and also each service instance, allowing fast, secure, and smart
interservice communication. The Pages service, which has multiple instances
in the figure, is a web-frontend microservice used in the MRA, described in
Chapter 7.

The Fabric Model turns the usual view of application development and delivery on
its head. Because NGINX Plus is on both ends of every connection, its capabilities
become properties of the network that the app is running on, rather than
capabilities of specific servers or microservices. NGINX Plus becomes the
medium for bringing the network, the “fabric,” to life, making it fast, secure,
smart, and extensible.

Microservices Reference Architecture 20 Ch.4-The Fabric Mode

Y

Pages SVC1

-, Microservice .

oq0
SVC5

Pages

Figure 4-1. In the Fabric Model, NGINX Plus runs as a reverse proxy server and in every
service instance

The Fabric Model is suitable for several use cases, which include:

* Government and military apps — For government apps, security is crucial,
or evenrequired by law. The need for security in military computation and
communication is obvious —as is the need for speed.

* Health and finance apps — Regulatory and user requirements mandate a
combination of security and speed for financial and health apps, with billions
of dollars in financial and reputational value at stake.

* Ecommerce apps — User trust is a huge issue for ecommerce and speed is
a key competitive differentiator. So combining speed and security is crucial.

As anincreasing number of apps use SSL/TLS to protect client communication,
it makes sense for backend — service-to-service —communication to be secured
as well.

Why the Fabric Model?

The use of microservices for larger apps raises a number of questions,
as described in our ebook, Microservices: From Design to Deployment.

There are four specific problems that affect larger apps. The Fabric Model
addresses these problems —and, we believe, largely resolves them.
Theseissues are:

* Secure, fast communication —Monolithic apps use in-memory communication
between processes; microservices communicate over the network. The move
to network communication raises issues of speed and security. The Fabric

Microservices Reference Architecture 21 Ch. 4-The Fabric Mode

https://www.nginx.com/resources/library/designing-deploying-microservices/

Model makes communication secure by using SSL/TLS connections for all
requests; it makes them fast by using NGINX Plus to make the connections
persistent — minimizing the most resource-intensive part of the process,
the SSL/TLS handshake.

Service discovery —In a monolithic app, functional components are
connected to each other by the application engine. A microservices
environment is dynamic, so services need to find each other before
communicating. In the Fabric Model, each service instance does its own
service discovery, with NGINX Plus using its built-in DNS resolver to query
the service registry.

* Load balancing — User requests need to be distributed efficiently across
microservice instances. In the Fabric Model, NGINX Plus provides a variety
of load-balancing schemes to match the needs of the services on both ends
of the connection.

Resilience — A badly behaving service instance can greatly impact the
performance and stability of an app. In the Fabric Model, NGINX Plus can
run health checks on every microservice, implementing the powerful circuit
breaker pattern as an inherent property of the network environment the app
runsin.

The Fabric Model is designed to work with external systems for container
management and service registration. This can be provided by a container
management framework such as Docker Swarm/Docker Cloud, Deis, or
Kubernetes; specific service registry tools, such as Consul, etcd, or ZooKeeper;
custom code; or a combination.

Through the use of NGINX Plus within each microservice instance, in collaboration
with a container management framework or custom code, all aspects of these
capabilities —interservice communication, service discovery, load balancing,
and the app’'s inherent security and resilience — are fully configurable and
amenable to progressive improvement.

Fabric Model Capabilities

This section describes the specific, additional capabilities of the Fabric Model
in greater depth. Properties that derive from the use of NGINX Plus "“in front of”
application servers are also part of the other two models, and are described in
The Proxy Model.

Microservices Reference Architecture 22 Ch.4-TheFab

¢ Mode

The “Normal” Process

The Fabric Model is an improvement on the approach to service discovery, load

balancing, and interprocess communication that is typically used in a

microservices application. To understand the advantages of the Fabric Model,
it's valuable to first take a look at how a "normal” microservices app carries out

these functions.

Figure 4-2 shows a microservices app with three service instances —one instance

of an Investment Manager service and two instances of a User Manager

service.

INVESTMENT
MANAGER
INSTANCE 1

Java Service
(only to 1st

DNS service)

Initiating an
SSL Connection
(process for
all requests)

USER
MANAGER
INSTANCE 1

Y

PHP
Service

REGISTRY
— IPs of User DNS « Consul
Manager —>|\Interface| .etcd

SERVICE

¢ Kubernetes
* ZooKeeper

USER
MANAGER
INSTANCE 2

PHP
Service

Figure 4-2. In the "normal” process, a new SSL handshake is required for every

interservice communication

Microservices Reference Architecture

23

Ch. 4-The Fabric Mode

When Investment Manager Instance 1 needs to make a request of a User Manager
instance, it initiates the following process:

1. Investment Manager Instance 1 creates an instance of an HTTP client.

2. The HTTP client requests the address of a User Manager instance from the
service registry's DNS interface.

3. The service registry sends back the IP address for one of the User Manager
service instances —in this case, Instance 1.

4. Investment Manager Instance 1 initiates an SSL/TLS connection to User
Manager Instance 1 —a lengthy, nine-step process.

. Investment Manager Instance 1 closes down the connection.
. Investment Manager Instance 1 garbage collects the HTTP client.

W g O O

Dynamic Service Discovery

In the Fabric Model, the service discovery mechanism is entirely different.
The DNS resolver running in NGINX Plus maintains a table of available service
instances. The table is updated regularly and without the need for a restart at
each update.

To keep the table up to date, NGINX Plus runs an asynchronous, nonblocking
resolver that queries the service registry regularly, perhaps every few seconds,
using DNS SRV records for service discovery — a feature introduced in
NGINX Plus R9. When the table is in frequent use, it's queried far more often than
it's updated, creating efficiencies in operation. When a service instance needs to
make a request, the endpoints for all peer microservices are already available.

Itis important to note that neither NGINX Plus nor the Fabric Model provide any
mechanism for service registration — the Fabric Model is wholly dependent on a
container management system, a service discovery tool, or equivalent custom

code to manage the orchestration and registration of containers.

. Using the new connection, Investment Manager Instance 1 sends the request.
. Replying on the same connection, User Manager Instance 1 sends the response.

Microservices Reference Architecture 24 Ch.4-TheFab

¢ Mode

https://www.nginx.com/blog/nginx-plus-r9-released/#dns-srv

INVESTMENT
MANAGER
INSTANCE 1

N+

DNS
Resolution

SERVICE
REGISTRY

* Consul
* etcd

* Kubernetes
* ZooKeeper

Java
Service

DNS
Interface

& IPs of User
Manager

Persistent SSL & Load Balancing

USER
MANAGER
INSTANCE 1

/

USER
MANAGER
INSTANCE 2

«—| PHP

PHP
Service

Service

Figure 4-3. NGINX Plus updates the services table for each service as a background task

Load Balancing

The table of service instances populated by the NGINX Plus DNS resolver
is also the load-balancing pool to which NGINX Plus routes requests. As the
developer, you choose the load-balancing method to use. One option is
Least Time, a sophisticated algorithm that uses connection timing and
response speed to identify the service that is responding fastest (and is
therefore the most available).

If a service has to connect to a monolithic system, or some other stateful
system, a load-balancing algorithm that provides session persistence
ensures that requests within a given user session continue to be sent to
the same service instance.

Microservices Reference Architecture 25 Ch. 4-The Fabric Mode

https://www.nginx.com/products/application-load-balancing/#load-balancing-methods
https://www.nginx.com/resources/glossary/session-persistence/

With load balancing built in, you can optimize the performance of each service
instance, and therefore the app as a whole.

INVESTMENT
MANAGER
INSTANCE 1

N+

DNS
Resolution

SERVICE

REGISTRY
e Consul DNS
e etcd Interface
* Kubernetes
* ZooKeeper

Java

& IPs of User A
Service

Manager

Persistent SSL & Load Balancing

USER USER
MANAGER MANAGER
INSTANCE 1 INSTANCE 2

/

«— PHP
Service

PHP
Service

Figure 4-4. In the Fabric Model, services handle their own load balancing

SSL/TLS Connections “For Free”

SSL/TLS connections in the Fabric Model are persistent. A connection is created,
with a full SSL/TLS handshake, the first time one service instance makes a request
of another —and then the same connection is reused for future requests, perhaps
thousands of times.

In essence, a mini-VPN is created between pairs of service instances. The effect
is dramatic: in one recent test, fewer than 1% of transactions required a new
SSL/TLS handshake. (It's important to note that even though the overhead for
handshakes is very small, SSL/TLS is still not free, because all message data is
encrypted and decrypted.)

With service discovery and load balancing running as background tasks,
not repeated as a part of each new request, requests are handled very quickly.

Microservices Reference Architecture 26 Ch.4-The Fabric Mode

Here's how connections are created and used for the same operation outlined
for the "normal” process (see Figure 4-5 for a graphic representation):

1. Within Investment Manager Instance 1, application code constructs a
request to be sent to the User Manager and sends the request to its local
NGINX Plus instance.

2. From its internal table, and applying the load-balancing method chosen by the
developer, NGINX Plus selects the endpoint for User Manager Instance 1 as the
destination for the request (see Dynamic Service Discovery).

3. If this'is the first request between the two service instances, the NGINX Plus
instance establishes a persistent SSL/TLS connection to User Manager
Instance 1. For later requests, the persistent connection is reused.

4. Using the persistent connection, Investment Manager Instance 1 sends
the request.

5. Replying on the same connection, User Manager Instance 1 sends the response.

INVESTMENT
MANAGER
INSTANCE 1

N+

DNS
Resolution

SERVICE

REGISTRY
* Consul DNS
* etcd Interface
* Kubernetes
* ZooKeeper

Java
Service

& IPs of User
Manager

Persistent SSL & Load Balancing

USER
MANAGER
INSTANCE 1

/

USER
MANAGER
INSTANCE 2

«—| PHP

PHP
Service

Service

Figure 4-5. NGINX Plus maintains reusable connections between service instances

Microservices Reference Architecture 27 Ch.4-The Fabric Mode

Resilience

With the application health check capability in NGINX Plus, you can build the
circuit breaker pattern into your microservices app (for a detailed discussion,
see Chapter 6). NGINX Plus can send a health check to a specific endpoint for
each service instance. You can define a range of responses and have NGINX
Plus evaluate them using its built-in regular expression interpreter.

NGINX Plus stops sending traffic to unhealthy instances, but allows requests that
are in process to finish. It also offers a slow-start mode for recovering service
instances so they aren't overwhelmed with new traffic. If a service goes down
entirely, NGINX can serve "stale” cached data in response to requests in order
to provide continuity of service, even if the microservice is unavailable.

These resilience features make the entire app faster, more stable, and more secure.

N+

@@@@
(O]

Figure 4-6. Active health checks take troubled service instances out of the
service-discovery list

Microservices Reference Architecture 28 Ch. 4 -The Fabric Mode

https://www.nginx.com/products/application-health-checks/#slow-start-details

Comparing the Fabric Model to the “Normal” Process

To sum up the differences, and highlight some of the advantages of the Fabric
Model over the “normal” process, this table compares how the two handle major

app functions.

NORMAL PROCESS

Service discovery happens
just before request is made;
must wait for needed URL

FABRIC MODEL

Service discovery runs
as background task; URL
available instantly

COMPARISON

Fabric Model is faster

Primitive load-balancing
techniques

Advanced
load-balancing
techniques

Fabric Model is faster, more
flexible, and more advanced

New nine-step SSL/TLS
handshake for every service
request and response

Persistent "mini-VPN"
with few handshakes

Fabric Model is much faster

Resilience poor;
“sick” or "dead”
services cause delays

Resilience builtin;

“sick” and "dead" services
isolated proactively with
circuit breaker pattern

Fabric Model is much
more resilient

Table 4-1. The Fabric Model is fast, flexible, advanced, and resilient

The difference between the Fabric Model and the "normal” process is strongest
in the most-repeated activity for any app: interprocess communication. In the
“normal” process, every request requires a separate service discovery request,
aload-balancing check, and a full nine-step SSL/TLS handshake. With the
Fabric Model, service discovery and load balancing happen in the background,

before a request is made.

In the Fabric Model, SSL/TLS handshakes are rare; they only occur the first
time one service instance makes a request of another. In one recent test of an
application using the Fabric Model, only 300 SSL/TLS handshakes were needed
to establish interservice connections for 100,000 total transactions. That's a
99.7% reduction in handshakes — delivering a strong boost in application
performance while maintaining secure interprocess communication.

Microservices Reference Architecture

29

Ch.4-The Fabric Mode

Implementing the Fabric Model

With the MRA still in development, there are three overlapping approaches you
can take to begin implementing the Fabric Model today:

1. Take MRA training. NGINX offers popular training courses for the MRA.
Training is a great first step for using the MRA.

2. Implement NGINX Plus “in front of” your existing server architecture. You can
begin to use it as a reverse proxy server, cache for static files, and more.
(All three MRA models use NGINX Plus this way.) Then wait for the public
release of the MRA later this year to start implementing the Fabric Model.

3. Contact NGINX Professional Services today. Our Professional Services team
can help you assess your needs and begin implementation of the Fabric Model,
even as it's prepared for public release.

Conclusion

The Fabric Model networking architecture for microservices is the most
sophisticated and capable of the MRA models. NGINX Plus, acting as both the
reverse proxy server for the entire app and the forward and reverse proxy server
for each individual service, brings to life the network that connects service
instances.

In the Fabric Model, stable SSL/TLS connections provide both speed and security.
Service discovery, in tandem with a service registry tool or custom code, and load
balancing, in combination with a container management tool or custom code,
are fast, capable, and configurable. Health checks per service instance make
the system as a whole faster, more stable, and more secure.

Microservices Reference Architecture 30 Ch.4-The Fabric Mode

http://university.nginx.com/instructor-led-training/microservice-network-architectures-with-nginx
https://www.nginx.com/products/
https://www.nginx.com/services/

Adapting the
Twelve-Factor App
for Microservices

Software is increasingly delivered over the Internet as a service. Originally called
Software as a Service (SaaS), similar software —with a much stronger emphasis
on mobile interaction —is now usually referred to as web apps.

The Twelve-Factor App is a praiseworthy effort by Heroku, a Platform as a
Service (PaaS) provider, to establish general principles for creating useful web
apps. However, the original principles are somewhat specific to Heroku's PaaS
platform. They aren't an exact fit for a microservices architecture.

In implementing the NGINX Microservices Reference Architecture
(MRA), we've extended the Twelve-Factor App with our own additions
and microservices-specific modifications. We've found the amended
version extremely useful.

Forinstance, the Twelve-Factor App specifies that configuration code be stored
in environment variables, rather than in configuration files. This is an extremely
useful principle for the MRA, which has three different models, with the only
difference between them being their configuration code and the number of
NGINX Plus servers they use.

Building on what we've learned, we have developed the following set of principles.
Our principles adapt the core ideas in the Twelve-Factor App to a general-purpose
microservices architecture.

We invite you to use these principles in the development of your own apps. To keep
repetition between this chapter and the original Twelve-Factor App document
to a minimum, we've linked to the section for each factor, rather than defining or
describing the factors again.

Microservices Reference Architecture 31 Ch. 5-Adapting the Twelve-Factor App for Microservices

http://12factor.net/

The Twelve Factors Applied to Microservices

1-Codebase
One codebase per service, tracked in revision control: many deploys

The Twelve-Factor App recommends one codebase per app. In a microservices
architecture, the correct approach is actually one codebase per service.
Additionally, we strongly recommend the use of Git as a repository, because
of its rich feature set and enormous ecosystem. While GitHub has become the
default Git hosting platform in the open source community, there are many other
excellent Git hosting options, depending on the needs of your organization.

2 -Dependencies
Explicitly declare and isolate dependencies

As suggested in the Twelve-Factor App, regardless of what platform your
applicationis running on, use the dependency manager included with your
language or framework. How you install operating system or platform
dependencies depends on the platform:

* In noncontainerized environments, use a configuration management tool
(Chef, Puppet, Ansible) to install system dependencies.
* In a containerized environment, do this in the Dockerfile or equivalent.

Note: We recommend that you choose a dependency management mechanism
in the context of your comprehensive Infrastructure-as-Code strategy, not as
an isolated decision. See Martin Fowler's writings on Infrastructure-as-Code
and download the O'Reilly report Infrastructure as Code by Kief Morris.

3 -Config
Store configuration in the environment

Anything that varies between deployments can be considered configuration.
The Twelve-Factor App guidelines recommend storing all configuration in the
environment, rather than committing it to the repository. We recommend the
following specific practices:

* Use non-version-controlled .env files for local development. Docker supports
the loading of these files at runtime.

* Keep all .env files in a secure storage system, such as Vault, to make the files
available to the development teams, but not commited to Git.

* Use an environment variable for anything that can change at runtime, and for
any secrets that should not be committed to the shared repository.

* Once you have deployed your application to a delivery platform, use the delivery
platform’s mechanism for managing environment variables.

Microservices Reference Architecture 32 Ch. 5-Adapting the Twelve-Factor App for Microservices

http://12factor.net/codebase
http://12factor.net/dependencies
http://martinfowler.com/bliki/InfrastructureAsCode.html
https://www.nginx.com/resources/library/infrastructure-as-code/
http://12factor.net/config
http://12factor.net/config
https://www.vaultproject.io/

4 - Backing Services
Treat backing services as attached resources

The Twelve-Factor App guidelines define a backing service as "any service the
app consumes over the network as part of its normal operation”. The implication
for microservices is that anything external to a service is treated as an attached
resource, including other services. This ensures that every service is completely
portable and loosely coupled with the other resources in the system. Additionally,
the strict separation increases flexibility during development — developers only
need to run the services they are modifying, not others.

5 - Build, Release, Run
Strictly separate build and run stages

To support strict separation of build, release, and run stages, as recommended
by the Twelve-Factor App, we recommend the use of a continuous integration/
continuous delivery (CI/CD) tool to automate builds. Docker images make it easy
to separate the build and run stages. Ideally, Docker images are created from
every commit and treated as deployment artifacts.

6 - Processes
Execute the app in one or more stateless processes

For microservices, the important point in the Processes factor is that your
application needs to be stateless. This makes it easy to scale a service horizontally
by simply adding more instances of that service. Store any stateful data, or data
that needs to be shared between instances, in a backing service such as Redis.

7 - Data Isolation
Each service manages its own data

As a modification to make the Port Binding factor more useful for microservices,
we recommend that you allow access to the persistent data owned by a service
only via the service's API. This prevents implicit service contracts between
microservices and ensures that microservices can't become tightly coupled.
Data isolation also allows the developer to choose, for each service, the type

of data store that best suits its needs.

Microservices Reference Architecture 33 Ch. 5-Adapting the Twelve-Factor App for Microservices

http://12factor.net/backing-services
http://12factor.net/build-release-run
http://12factor.net/processes
http://12factor.net/port-binding

8 - Concurrency
Scale out via the process model

The Unix process modelis largely a predecessor to a true microservices
architecture, insofar as it allows specialization and resource sharing for different
tasks within a monolithic application. In a microservices architecture, you can
horizontally scale each service independently, to the extent supported by the
underlying infrastructure. With containerized services, you further get the
concurrency recommended in the Twelve-Factor App, for free.

9 - Disposability
Maximize robustness with fast startup and graceful shutdown

Instances of a service need to be disposable so they can be started, stopped,
and redeployed quickly, and with no loss of data. Services deployed in Docker
containers satisfy this requirement automatically, as it's an inherent feature of
containers that they can be stopped and started instantly. Storing state or session
data in queues or other backing services ensures that a request is handled
seamlessly in the event of a container crash. We are also proponents of using

a backing store to support crash-only design.

10 - Dev/Prod Parity
Keep development, staging, and production as similar as possible

Keep all of your environments — development, staging, production, and so on -
as identical as possible, to reduce the risk that bugs show up only in some
environments. To support this principle, we recommend, again, the use of
containers —a very powerful tool here, as they enable you to run exactly the
same execution environment all the way from local development through
production. Keep in mind, however, that differences in the underlying data
can still cause differences at runtime.

11 -Logs

Treat logs as event streams

Instead of including code in a microservice for routing or storing logs, use one
of the many good log-management solutions on the market, several of which

are listed in The Twelve-Factor App. Further, deciding how you work with logs
needs to be part of alarger APM and/or PaaS strategy.

Microservices Reference Architecture 34 Ch. 5-Adapting the Twelve-Factor App for Microservices

https://devcenter.heroku.com/articles/process-model
http://12factor.net/concurrency
http://12factor.net/disposability
http://lwn.net/Articles/191059/
http://12factor.net/dev-prod-parity
http://12factor.net/logs

12 - Admin Processes
Run admin and management tasks as one-off processes

In a production environment, run administrative and maintenance tasks separately
from the app. Containers make this very easy, as you can spin up a container
just to run a task and then shut it down.

Conclusion

Use the Twelve-Factor App and these additional principles to help you create
robust microservices-based apps. In addition, the NGINX MRA is like a cheat code
to help you go further, faster, than if you had to start from scratch.

Microservices Reference Architecture 35 Ch. 5-Adapting the Twelve-Factor App for Microservices

http://12factor.net/admin-processes

Implementing the
Circuit Breaker Pattern
with NGINX Plus

Microservices application design has wrought a wholesale change in the way
that applications function. In a microservices architecture, an "application” is
now a collection of services that rely on each other to perform tasks and to
provide functionality. In complex applications, the service graph can be quite
deep, and can have multiple interdependencies between the various services.

For example, a user service may be integral to many other services that rely on
user data provided by the service. In this scenario, a failure of the user service
might cause a cascade of failures throughout the application.

The circuit breaker pattern —a term popularized by Martin Fowler — has been
gaining currency among microservices architects as an application design
pattern for avoiding cascading service failure. The idea of the circuit breaker
pattern is to monitor your application services and the traffic flowing among
them in order to prevent failures —and, when failures do happen, to minimize
theirimpact on your applications.

For microservices, the circuit breaker pattern is especially valuable, providing
bottom-up resilience. If implemented correctly, it can help avoid cascading
failures by providing continuity of service even when services are unavailable.
The circuit breaker pattern has been most famously embraced by Netflix as a
critical component in their application design philosophy.

Microservices Reference Architecture 36 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

http://martinfowler.com/bliki/CircuitBreaker.html
http://techblog.netflix.com/2011/12/making-netflix-api-more-resilient.html

Don't Avoid Failure, Embrace It

A key tenet of modern application design is that failure will occur. The layer cake
that modern applications rely on — from cloud-hosted virtual machines to
containers to application libraries to dynamic networking — means that the moving
parts in any application are legion. You need to assume that one or more parts
of your application will fail in some manner at some point. Expecting failure, and
building in mechanisms to mitigate its effects, goes a long way toward making
your application more resilient.

One of the most critical goals of the circuit breaker pattern is attempting to prevent
failure in the first place. For some types of error conditions, say running out of
memory, it's possible to recognize that failure is imminent and take measures to
preventit. Thisis typically accomplished by the service signaling that it is unhealthy,
and the circuit breaker then giving the service a chance to recover by throttling
back the number of requests or rerouting them completely. Once the service has
recovered, itis also prudent for the circuit breaker to slowly ramp up requests to the
service so as not to immediately overwhelm it and risk its going unhealthy again.

In the NGINX Ingenious photosharing app, we have a service called the resizer.
When a large photo is uploaded to the system, the resizer decompresses it,
corrects its rotation, shrinks it, then shrinks it again, saving the corrected original
image and the two resized images to an object store. The nature of these processes
makes the resizer the most processor-intensive and memory-intensive part of
the application.

When many images are being resized simultaneously, a resizer instance can run
out of memory and, in some scenarios, fail completely. To avoid problems, we put
a circuit breaker between the resizer service and the uploader service that feeds
images to it. The uploader regularly queries the resizer instance for its health
status. The query triggers the resizer to evaluate whether it has used more than
80% of available memory, among other health checks, and respond to the
uploader with its health status.

If aresizer instance indicates that it is unhealthy, the uploader routes requests
to other instances —as shown in Figure 6-1 —but keeps checking to see whether
thatresizer instance has recovered. When the resizer instance indicates it is
healthy again, itis put back into the load-balancing pool, and the uploader
slowly ramps traffic up to the instance's full capacity. This design prevents
instances of the resizer from failing completely, prevents work from being begun
but not completed, prevents excessive waiting for users whose processes
would otherwise have failed, and helps the system deal most effectively with
the request stream sent to it.

Microservices Reference Architecture 37 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

Uploader Health check (V)

W

A,
) 5
¢, %

Figure 6-1. Active health checks prevent calls to an unhealthy microservice instance

The Circuit Breaker Pattern Improves Consistency

One of the benefits of implementing the circuit breaker at the NGINX Plus level
is that it creates a universal, consistent, and highly flexible layer for managing
circuit breakers across your microservices application. This universality and
consistency means that you don't have to manage and build around the nuances
and inconsistencies of the circuit breaker libraries for each language.

You gain many advantages by keeping most of the circuit breaker functionality
out of the code of each service and implementing it in NGINX Plus instead:

* The circuit breaker for a service written in Java (for example) is the same as
for a service written in PHP.

* You avoid having to reimplement the circuit breaker functionality across the
mix of languages and support libraries used by each of your services.

* Each service that does not need to include the circuit breaker code is thereby
simplified; it runs faster and is easier to write, debug, run, and maintain.

* The support code for each service is simplified; the mix of libraries and systems
used can reflect the core functionality of the service only.

* The circuit breaker code is simplified; existing in only one place, it can be stripped
down to its essentials, without the need to accommodate local contexts.

Microservices Reference Architecture 38 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

* The circuit breaker code can take advantage of NGINX Plus capabilities such
as caching, making it far more powerful.

* You can fine-tune your NGINX Plus-level circuit breaker approach, thenreuse itin
other applications and across deployment platforms — such as on-premises,
on different cloud platforms, and in blended environments.

Itis important to note, however, that circuit breakers cannot be implemented
in NGINX Plus alone. A true circuit breaker requires the service to provide
an introspective, active health check at a designated URI (typically /health).
The health check must be appropriate to the needs of that specific service.

In developing the health check, you need to understand the failure profile of the
service and the kinds of conditions that can cause failure, such as a database
connection failure, an out-of-memory condition, running out of disk space, or an
overloaded CPU. These conditions are evaluated in the health check process,
which then provides a binary status of healthy or unhealthy.

The Circuit Breaker Pattern Provides Flexibility

When you implement the circuit breaker pattern at the NGINX Plus level,
as described here, it's up to NGINX Plus to deal with the situation when a service
instance communicates that it is unhealthy. There are a number of options.

The first option is to redirect requests to other, healthy instances, and keep
querying the unhealthy instance to see if it recovers. The second option is to
provide cached responses to clients that request the service, maintaining
stability even if the service is unavailable. This solution works well with
read-oriented services, such as a content service.

Another option is to provide alternative data sources. For example, a customer
of ours has a personalized ad server that uses profile data to serve targeted ads
forits users. If the personalized ad server is down, the user request is redirected
to a backup server that provides a generic set of ads appropriate for everyone.
This alternative data source approach can be quite powerful.

Finally, if you have a clear understanding of the failure profile of a service, you can
mitigate failure by adding rate limiting to the circuit breaker. Requests are allowed
through to the service only at the rate it can handle. This creates a buffer within
the circuit breaker so that it can absorb spikes in traffic.

Rate limiting can be particularly powerful in a centralized load-balancing scenario
like the Router Mesh Model, where application traffic is routed through a limited
number of load balancers which can have a good understanding of the total
traffic usage across the site.

Microservices Reference Architecture 39 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

Implementing the Circuit Breaker Pattern in NGINX Plus

As we've described above, the circuit breaker pattern can prevent failure before
it happens by reducing traffic to an unhealthy service or routing requests away
fromit. It requires an active health check connected to an introspective health
monitor on each service. Unfortunately, a passive health check does not do the
trick, as it only checks for failure — at which point, it is already too late to take
preventive action. This is why the open source NGINX software cannot fully
implement the circuit breaker pattern — it supports only passive health
checks.

NGINX Plus, however, has a robust active health-check system with many options
for checking and responding to health issues. Looking at the implementation of
some of the service types for the NGINX Microservices Reference Architecture
(MRA) provides good examples of the options and use cases for implementing
the circuit breaker.

Let's start with the uploader service in the Ingenious photosharing app, which
connects to the resizer. The uploader puts images into an object store, then tells
the resizer to open animage, correct it, and resize it. This is a compute-intensive
and memory-intensive operation. The uploader needs to monitor the health of
the resizer and avoid overloading it, as the resizer can literally kill the host that it
iS running on.

The first thing to do is create a 1ocation block specifically for the resizer
health check, as shown in the configuration snippet below.

This locationblockisan internal location, meaning thatit cannot be
accessed with a request to the server's standard URL (http://fexample.com/
health-check-resizer). Instead, it acts as a placeholder for the health-check
information. The health check directive sends a health check request to the
resizer's /health URI every three seconds and uses the tests defined in the
match block called conditions to check the health of the service instance.
A service instance is marked as unhealthy when it misses a single check.
The proxy * directives send the health check to the resizer upstream group,
using TLS 1.2 over HTTP 1.1 with the indicated HT TP headers set to null.

Microservices Reference Architecture 40 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

http://nginx.org/en/docs/http/ngx_http_core_module.html#location
http://nginx.org/en/docs/http/ngx_http_core_module.html#internal
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#health_check
http://nginx.org/en/docs/http/ngx_http_proxy_module.html

location /health-check-resizer {
internal;
health check uri=/health match=conditions fails=l interval=3s;

proxy pass https://resizer;
proxy ssl session reuse on;

proxy ssl protocols TLSv1.2;

proxy http version 1.1;
proxy set header Connection ",

proxy set header Accept-Encoding "";

}

The next step is to create the conditions match block to specify the responses that
represent healthy and unhealthy conditions. The first check is of the response status code:
ifitisin the range from 200 through 399, testing proceeds to the next check. The second
checkis that the Content-Type headeris application/Json. Finally, the third
check is aregular expression match against the value of the deadlocks, Disk, and
Memory metrics. If the value is healthy forall of them, then the service is determined
to be healthy.

match conditions {
status 200-399;
header Content-Type ~ "application/json";
body ~ '{
"deadlocks":{"healthy":true},
"Disk":{"healthy":true},
"Memory":{"healthy":true}
JAN
}

The NGINX Plus circuit-breaker/health-check system also has a slow-start feature.
The slow start parameter to the server directive that defines the resizer service
inthe upstream block tells NGINX Plus to moderate the flow of traffic when a resizer
instance first returns from an unhealthy state. Rather than just slamming the service with
the same number of requests sent to healthy services, traffic to the recovering service
is slowly ramped up to the normal rate over the period indicated by the slow start
parameter —in this case, 30 seconds. The slow start improves the chances that the
service will return to full capability while reducing the impact if that does not happen.

upstream resizer {
server resizer slow start=30s;
zone backend 64k;
least time last byte;
keepalive 300;

Microservices Reference Architecture 41 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

http://nginx.org/en/docs/http/ngx_http_upstream_module.html#match
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#slow_start

Request limiting manages and moderates the flow of requests to the service.
If you understand the failure profile of the application well enough to know the
number of requests that it can handle at any given time, then implementing
request limiting can be a real boon to the process. However, this feature works
only if NGINX Plus has full awareness of the total number of connections being
passed into the service. Because of this, it is most useful to implement the
request-limiting circuit breaker on an NGINX Plus instance running in a container
with the service itself, as in the Fabric Model, or in a centralized load balancer
that is tasked with managing all traffic in a cluster.

The following configuration code snippet defines a rate limit on requests to be
applied to the resizer service instances in their containers. The 1imit reqg zone
directive defines the rate limit at 100 requests per second. The $Sserver addr
variable is used as the key, meaning that all requests into the resizer container
are counted against the limit. The zone's name is moderateReqs and the
timeframe for keeping the request countis 1 minute. The 1imit req
directive enables NGINX Plus to buffer bursts up to 150 requests. When that
number is exceeded, clients receive the 503 error code as specified by the
limit reqg status directive, indicating that the service is unavailable.

http {
#Moderated delivery
limit reg zone $server addr zone=moderateRegs:lm rate=100r/s;

server {

limit req zone=moderateReqgs burst=150;
limit reqg status 503;

}

Another powerful benefit of running the circuit breaker within NGINX Plus is the
ability to incorporate caching and maintain cached data centrally, for use across
the system. This is particularly valuable for read-oriented services like content
servers where the data being read from the backend does not change frequently.

proxy cache path /app/cache levels=1:2 keys zone=oauth cache:10m
max_ size=10m inactive=l5s use_ temp path=off;

upstream user-manager {
server user-manager;
zone backend 64k;
least time last byte;
keepalive 300;

Microservices Reference Architecture 42 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

http://nginx.org/en/docs/http/ngx_http_limit_req_module.html

server {
listen 443 ssl;
location /vl/users {

proxy pass http://user-manager;
proxy cache ocauth cache;
proxy cache valid 200 30s;

proxy cache use stale error timeout invalid header updating
http 500 http_ 502 http 503 http 504;

}

As shown in Figure 6-2, caching data means that many customer data requests
never reach the microservice instances, freeing up capacity for requests that
haven't been sent previously.

Content

service 1

Content

service 2

|

Figure 6-2. While caching is generally used to speed performance by preventing calls
to microservice instances, it also serves to provide continuity of service for complete
service failure

Microservices Reference Architecture 43 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

However, with a service where data can change, for example a user-manager

service, a cache needs to be managed judiciously. Otherwise you can end up

with a scenario where a user makes a change to his or her profile, but sees old
data in some contexts because the data is cached. A reasonable timeout, and
accepting the principle of high availability with eventual consistency, can help
resolve this conundrum.

One of the nice features of the NGINX cache is that it can continue serving cached
data even if the service is completely unavailable —in the snippet above, if the
service is responding with one of the four most common 500-series error codes.

Cachingis not the only option for responding to clients even when a server is down.
As we mentioned in The Circuit Breaker Pattern Provides Flexibility, one of our
customers needed a resilient solution in case their personalized ad server went
down, and cached responses were not a good solution. Instead, they wanted a
generic ad server to provide generalized ads until the personalized server came
back online. This is easily achieved using the backup parameter to the server
directive. The following snippet specifies that when all servers defined for

the personal-ad-server domain are unavailable, the servers defined for the
generic-ad-server domain are used instead.

upstream personal-ad-server {

server personal-ad-server;
server generic-ad-server backup;
zone backend 64k;

least time last byte;
keepalive 300;

}

And finally, it is possible to have NGINX evaluate the response codes from a
service and deal with those individually. In the following snippet, if a service
returns a 503 error, NGINX Plus sends the request on to an alternative service.
For example, if the resizer has this feature, and the local instance is overloaded
or stops functioning, requests are then sent to another instance of the resizer.

location / {
error page 503 = @fallback;
}

location @fallback {
proxy pass http://alternative-backend;

Microservices Reference Architecture 44 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

https://www.nginx.com/blog/nginx-caching-guide/
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#backup

Conclusion

The circuit breaker pattern is a powerful tool to provide resiliency and control in
your microservices application. NGINX Plus provides many features and options
that help implement the circuit breaker in your environment. The key to
implementing the circuit breaker pattern is to understand the failure profile of the
service you are protecting, then choose the options that best prevent failure,
where possible, and that best mitigate the effects of failure when it does happen.

Microservices Reference Architecture 45 Ch. 6-Implementing the Circuit Breaker Pattern with NGINX Plus

Building a
Web Frontend
for Microservices

This chapter addresses an application-delivery component that has been largely
ignored in the microservices arena: the web frontend. While many articles and
books have been written about service design, there is a paucity of information
about how to integrate arich, user-experience-based web component that
overlays onto the microservice components that make up your application.
This chapter attempts to provide a solution to the thorny problem of web
development in a microservices application.

In many respects, the web frontend is the most complex component of your
microservices-based application. On a technical level, it combines business and
display logic using a combination of JavaScript and server languages like PHP,
HTML, and CSS. Adding more complexity, the user experience of the web app
typically crosses microservice boundaries in the backend, making the web
component a default control layer.

This is typically implemented through some sort of state machine, but
must also be fluid, high-performance, and elegant. These technical and
user-experience requirements run counter to the design philosophy of

the modern, microservices-based web, which calls for small, focused, and
ephemeral services. In many respects, it is better to compare the web frontend
of anapp to aniOS or Android client, which is both a service-based client and
arich application unto itself.

Our approach to building a web frontend combines the best of web application
design with microservices philosophy, to provide a rich user experience thatis
service-based, stateless, and connected. When building a microservices web
component, the solution combines a Model-View-Controller (MVC) framework for
control, attached resources to maintain session state, and routing by NGINX Plus
to provide access to services.

Microservices Reference Architecture 46 Ch. 7-Building a Web Frontend with Microservices and NGINX Plus

https://en.wikipedia.org/wiki/Model-view-controller

Using MVC for Control

One of the most important technical steps forward in web application design has
been the adoption of Model-View-Controller (MVC) frameworks. MVC frameworks
can be found in every major language from Symfony on PHP to Spring in Java,

in Ruby on Rails, and even in the browser with JavaScript frameworks like EmberJS.
MVC frameworks segment code into areas of like concern — data structures
are managed in models, display logic is managed in views, and state changes and
data manipulation are managed through controllers. Without an MVC framework,
control logic is often intermixed with display logic on the page —a pattern that is
common in standard PHP development.

The clear division of labor in MVC helps guide the process of converting web
applications into microservice-like frontend components. Fortunately, the biggest
area of change is confined to the controller layer. Models in an MVC system
map easily to the data structures of microservices, and the default approach to
interacting with models is through the microservices that manage them. In many
respects, this mode of interaction makes model development easier because the
data structures and manipulation methods are the domain of the microservices
teams that implement them, rather than the web frontend team. Similarly, views
don't need to change in any significant way — the stateless, ephemeral nature of
a microservice doesn't change the basic way data is displayed.

Itisin controllers where the biggest changes are required. Controllers typically
manage the interplay between a user's actions, the data models, and the views.
If a user clicks on a link or submits a form, the controller intercepts the request,
marshalls the relevant components, initiates the methods within the models to
change the data, collects the data, and passes it to the views. In many respects,
controllers implement a finite state machine (FSM) and manage the state transition
tables that describe the interaction of action and logical state. Where there are
complex interactions across multiple services, it is fairly common to build out
manager services that the controllers interact with — this makes testing more
discreet and direct.

In the NGINX Microservices Reference Architecture (MRA), we used the PHP

framework Symfony for our MVC system. Symfony has many powerful features
forimplementing MVC and adheres to the clear separation of concerns that we
were looking for in an MVC system.

Microservices Reference Architecture 47 Ch. 7-Building a Web Frontend with Microservices and NGINX Plus

https://symfony.com/

MVC in a

Micro-

Microservices service 1 Micro-
Context service 2
Service Service . .
Facade 1 Facade 2 8 sm'fif;% 2
e
. Service R
Views s _ | Facade3 .
N T N P
FRONTEND
MICROSERVICE CONTROLLER
INSTANCE

Response Request

Figure 7-1. A microservices-savvy web frontend using an MVC approach

We implemented our models using services that connected directly with the
backend microservices, and our views as Twig templates. The controllers handle
the interfaces between the user actions, the services (through the use of facades),
and the views. If we had tried to implement the application without an MVC
framework for the web frontend, the code and interplay with the microservices
would have been much messier and without clear areas to overlay the web
frontend onto the microservices.

Microservices Reference Architecture 48 Ch. 7-Building a Web Frontend with Microservices and NGINX Plus

http://twig.sensiolabs.org

Maintaining Session State

Web applications can become truly complex when they provide an cohesive
interface to a series of actions that cross service boundaries. Consider a common
ecommerce shopping cartimplementation. The user begins by selecting a product
or products to buy as he or she navigates across the site. When finished shopping
and ready to check out, the user clicks on a cart or shopping basket icon to
initiate the purchase flow. The app presents a list of the items marked for
purchase, along with relevant data like quantity ordered. The user then proceeds
through the purchase flow, putting in shipping information, billing information,
reviewing the order, and finally authorizing the purchase. Each form is typically
validated and the information can be utilized by the next screen (quantity
information is passed to the review screen, shipping info to the billing screen,
and so on). The user typically can move back and forth between the screens to
make changes until the order is finally submitted.

In monolithic applications like Oracle ATG Web Commerce, form data is maintained
throughout a session for easy access by the application objects. To maintain this
association, users are pegged to an application instance via a session cookie.
ATG even has a complex scheme for maintaining sessions in a clustered
environment to provide resiliency in case of a system fault. The microservices
approach eschews the idea of session state and in-memory session data
across page requests, so how does a microservices web app deal with the
shopping cart situation described above?

This is the inherent conundrum of a web app in a microservices environment.
In this scenario, the web app is probably crossing service boundaries —the shipping
form connects to a shipping service, the billing form to a billing service, and
so on. If the web app is supposed to be ephemeral and stateless, how is it
supposed to keep track of the submitted data and state of the process?

There are a number of approaches to solving this problem, but the format we like
the bestis to use a caching-oriented attached resource to maintain session state,
as described in Adapting the Twelve-Factor App for Microservices, and also as
shown in Figure 7-2. Using an attached resource like Redis or Memcached to
maintain session state means that the same logical flows and approaches used
in monolithic apps can be applied to a microservices web app, but data is stored
in a high-speed, atomically transactional caching system instead of in memory
on the web frontend instance.

Microservices Reference Architecture 49 Ch. 7-Building a Web Frontend with Microservices and NGINX Plus

http://www.oracle.com/us/products/applications/atg/web-commerce/index.html
http://redis.io/
https://memcached.org/

Session State

Monolithic
App
MONOLITHIC

i3

User 1

393

User 2

Memory

MICROSERVICE

Redis Cache

Frontend
Microservice
Instance 1

Frontend
Microservice
Instance 2

REDIS
Session 1

[session]

Frontend

Microservice

Instance 3

Figure 7-2. Using a caching-oriented attached resource to maintain session state

With a caching system in place, users can be routed to any web frontend instance
and the data is readily available to the instance, much as it was using an in-memory
session system. This also has the added benefit of providing session persistence
in case the user chooses to leave the site before purchasing —the data in the cache
can be accessed for an extended period of time (typically days, weeks, or months)
whereas in-memory session data is typically cleared after about 20 minutes.
While there is a slight performance hit from using a caching system instead

of in-memory objects, the inherent scalability of the microservices approach
means that the application can be scaled much more easily in response to load,
and the performance bottleneck typically associated with a monolithic application

becomes a nonissue.

The NGINX MRA implements a Redis cache, allowing session state to be saved

across requests where needed.

Microservices Reference Architecture

sand NGINX Plus

Routing to and Load Balancing Microservices

While maintaining session state adds complexity to the system, modern web
applications don't just implement functional user interactions in the server logic.
For a variety of user experience reasons, most web applications also implement
key functionality of the system in JavaScript on the browser.

The Ingenious photosharing app which is part of the NGINX MRA, for example,
implements much of the photo uploading and display logic in JavaScript on the
client. However, JavaScript has some inherent limitations that can make it difficult
to access microservices directly because of a security feature called cross-site
scripting (XSS). XSS prevents JavaScript applications from accessing any server
other than the one they were loaded from, otherwise known as the origin. Using
NGINX Plus, we are able to overcome this limitation by routing to microservices
through the origin.

NGINX Plus Load Balancing

jte
g-Sit

geriP

Ccros

Figure 7-3. NGINX Plus overcomes XSS limitations

Microservices Reference Architecture 51 Ch. 7-Building a Web Frontend with Microservices and NGINX Plus

https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting

Atypical approach to implementing microservices is to provide each service
with a DNS entry. For example, we might name the uploader microservice in the
Ingenious app uploader.example.com and the web app pages.example.com.
This makes service discovery fairly simple, in that it requires only a DNS lookup
to find the endpoints. However, because of XSS, JavaScript applications cannot
access hosts other than the origin. In our example, the JavaScript app can connect
only to pages.example.com, not to uploader.example.com.

As mentioned in Using MVC for Control, we use the PHP Symfony framework to
implement the web app in the NGINX MRA. To achieve the highest performance,
the system was built in a Docker container with NGINX Plus running the FastCGl
Process Manager (FPM) PHP engine. Combining NGINX Plus with FPM gives us
tremendous flexibility in configuring the HTTP/HT TPS component of the web
interaction, as well as providing us with powerful, software-based load-balancing
features. The load-balancing features are particularly important when providing
JavaScript with access to the microservices that it needs to interact with.

By configuring NGINX Plus as the web server and load balancer, we can easily
add routes to the needed microservices using the location directive and
upstream server definitions. In this case, the JavaScript application accesses
pages.example.com/uploader instead of uploader.example.com. This has the
added benefit that NGINX Plus provides powerful load-balancing features like
health checks of the services and Least Time load balancing across any number
of instances of uploader.example.com. In this way, we can overcome the XSS
limitation of JavaScript applications and allow them to have full access to the
microservices they need to interact with.

http {
resolver ns.example.com valid=30s;
use local DNS and override TTL to whatever value makes sense

upstream uploader {
least time header;
server uploader.example.com;
zone backend 64k;

Microservices Reference Architecture 52 Ch. 7 -Building a Web Frontend with Microservices and NGINX Pluc

https://www.nginx.com/products/application-health-checks/
https://www.nginx.com/products/application-load-balancing/#load-balancing-methods
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#server
http://nginx.org/en/docs/http/ngx_http_core_module.html#location

server

listen 443 ssl;
server name www.example.com;
root /www/public_html;

status zone pages;

Default location

location / {
try to serve file directly, fall back to app.php
try files Suri /app.php$is argsS$args;

}

location /uploader/image {
proxy pass http://uploader;
proxy set header Host uploader.example.com;

Conclusion

Implementing web application components in microservices apps is challenging
because they don't fit neatly into the standard microservices component
architecture. They typically cross service boundaries and require both server
logic and browser-based display logic. These unique features need complex
solutions to work properly in a microservices environment. The easiest way

to approach this is to:

* Implement the web app using an MVC framework to clearly separate
logical control from the data models and display views

* Maintain session state with an attached resource that provides
high-speed caching

* Use NGINX Plus for routing to and load balancing microservices,
to provide browser-based JavaScript logic with access to the
microservices it needs to interact with

This approach maintains microservices best practices while providing the rich
web features needed for a world-class web frontend. Web frontends created
using this methodology enjoy the scalability and development benefits of a
microservices approach. For additional details, watch our webinar on demand.

dwith Microservices and NGINX Plus

Microservices Reference Architecture 53 Ch.7

https://www.nginx.com/resources/webinars/web-microservice-controlled-stateless-and-connected/

